Reference for ultralytics/models/yolo/model.py
Note
This file is available at https://github.com/ultralytics/ultralytics/blob/main/ultralytics/models/yolo/model.py. If you spot a problem please help fix it by contributing a Pull Request 🛠️. Thank you 🙏!
ultralytics.models.yolo.model.YOLO
Bases: Model
YOLO (You Only Look Once) object detection model.
This constructor initializes a YOLO model, automatically switching to specialized model types (YOLOWorld or YOLOE) based on the model filename.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
model
|
str | Path
|
Model name or path to model file, i.e. 'yolo11n.pt', 'yolov8n.yaml'. |
'yolo11n.pt'
|
task
|
str | None
|
YOLO task specification, i.e. 'detect', 'segment', 'classify', 'pose', 'obb'. Defaults to auto-detection based on model. |
None
|
verbose
|
bool
|
Display model info on load. |
False
|
Examples:
>>> from ultralytics import YOLO
>>> model = YOLO("yolov8n.pt") # load a pretrained YOLOv8n detection model
>>> model = YOLO("yolov8n-seg.pt") # load a pretrained YOLOv8n segmentation model
>>> model = YOLO("yolo11n.pt") # load a pretrained YOLOv11n detection model
Source code in ultralytics/models/yolo/model.py
ultralytics.models.yolo.model.YOLOWorld
Bases: Model
YOLO-World object detection model.
Loads a YOLOv8-World model for object detection. If no custom class names are provided, it assigns default COCO class names.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
model
|
str | Path
|
Path to the pre-trained model file. Supports .pt and .yaml formats. |
'yolov8s-world.pt'
|
verbose
|
bool
|
If True, prints additional information during initialization. |
False
|
Source code in ultralytics/models/yolo/model.py
set_classes
Set the model's class names for detection.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
classes
|
list[str]
|
A list of categories i.e. ["person"]. |
required |
Source code in ultralytics/models/yolo/model.py
ultralytics.models.yolo.model.YOLOE
Bases: Model
YOLOE object detection and segmentation model.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
model
|
str | Path
|
Path to the pre-trained model file. Supports .pt and .yaml formats. |
'yoloe-v8s-seg.pt'
|
task
|
str
|
Task type for the model. Auto-detected if None. |
None
|
verbose
|
bool
|
If True, prints additional information during initialization. |
False
|
Source code in ultralytics/models/yolo/model.py
get_text_pe
get_visual_pe
Get visual positional embeddings for the given image and visual features.
This method extracts positional embeddings from visual features based on the input image. It requires that the model is an instance of YOLOEModel.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
img
|
Tensor
|
Input image tensor. |
required |
visual
|
Tensor
|
Visual features extracted from the image. |
required |
Returns:
Type | Description |
---|---|
Tensor
|
Visual positional embeddings. |
Examples:
>>> model = YOLOE("yoloe-v8s.pt")
>>> img = torch.rand(1, 3, 640, 640)
>>> visual_features = model.model.backbone(img)
>>> pe = model.get_visual_pe(img, visual_features)
Source code in ultralytics/models/yolo/model.py
get_vocab
predict
predict(
source=None,
stream: bool = False,
visual_prompts: dict = {},
refer_image=None,
predictor=None,
**kwargs
)
Run prediction on images, videos, directories, streams, etc.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
source
|
str | int | Image | ndarray
|
Source for prediction. Accepts image paths, directory paths, URL/YouTube streams, PIL images, numpy arrays, or webcam indices. |
None
|
stream
|
bool
|
Whether to stream the prediction results. If True, results are yielded as a generator as they are computed. |
False
|
visual_prompts
|
dict
|
Dictionary containing visual prompts for the model. Must include 'bboxes' and 'cls' keys when non-empty. |
{}
|
refer_image
|
str | Image | ndarray
|
Reference image for visual prompts. |
None
|
predictor
|
callable
|
Custom predictor function. If None, a predictor is automatically loaded based on the task. |
None
|
**kwargs
|
Any
|
Additional keyword arguments passed to the predictor. |
{}
|
Returns:
Type | Description |
---|---|
List | generator
|
List of Results objects or generator of Results objects if stream=True. |
Examples:
>>> model = YOLOE("yoloe-v8s-seg.pt")
>>> results = model.predict("path/to/image.jpg")
>>> # With visual prompts
>>> prompts = {"bboxes": [[10, 20, 100, 200]], "cls": ["person"]}
>>> results = model.predict("path/to/image.jpg", visual_prompts=prompts)
Source code in ultralytics/models/yolo/model.py
279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 |
|
set_classes
Set the model's class names and embeddings for detection.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
classes
|
list[str]
|
A list of categories i.e. ["person"]. |
required |
embeddings
|
Tensor
|
Embeddings corresponding to the classes. |
required |
Source code in ultralytics/models/yolo/model.py
set_vocab
Set vocabulary and class names for the YOLOE model.
This method configures the vocabulary and class names used by the model for text processing and classification tasks. The model must be an instance of YOLOEModel.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
vocab
|
list
|
Vocabulary list containing tokens or words used by the model for text processing. |
required |
names
|
list
|
List of class names that the model can detect or classify. |
required |
Raises:
Type | Description |
---|---|
AssertionError
|
If the model is not an instance of YOLOEModel. |
Examples:
>>> model = YOLOE("yoloe-v8s.pt")
>>> model.set_vocab(["person", "car", "dog"], ["person", "car", "dog"])
Source code in ultralytics/models/yolo/model.py
val
Validate the model using text or visual prompts.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
validator
|
callable
|
A callable validator function. If None, a default validator is loaded. |
None
|
load_vp
|
bool
|
Whether to load visual prompts. If False, text prompts are used. |
False
|
refer_data
|
str
|
Path to the reference data for visual prompts. |
None
|
**kwargs
|
Any
|
Additional keyword arguments to override default settings. |
{}
|
Returns:
Type | Description |
---|---|
dict
|
Validation statistics containing metrics computed during validation. |